## Adding and Subtracting with Rational Expressions

In preparation for adding and subtracting with rational expressions, let us review the problem of finding the missing numerator. See below.

$$
\frac{4}{7}=\frac{?}{21}
$$

Your eyes see 7 as one denominator and 21 as the other denominator.
Using what your eyes see (the 7 and 21), you can determine that the denominator, 7 , has been multiplied by 3 , and, to keep the two fractions equivalent, the numerator, 4 , above the denominator 7 , must also be multiplied by 3 .

So the new numerator is 12 . See below.


Now let us look at the same problem a different way. See below.

$$
\frac{4}{7}=\frac{?}{3 \cdot 7}
$$

Notice that the denominator, 21, has been replaced by its prime factorization, $3 \cdot 7$.
Now, the advantage of having the prime factorization, $3 \cdot 7$, in place of 21 is that your eyes see the 3 next to the 7 .

So, you do not have to ask, "What do I multiply 7 by to get 21 ?"
You see with your eyes what you multiplied the 7 by to get $3 \cdot 7$.
Do you see with your eyes what you multiply 5 by to get $8 \cdot 5$ ?
Do you see with your eyes what you multiply $y$ by to get $x y$ ?
Completing the problem above, we get:

$$
\begin{aligned}
& \frac{4}{7}=\frac{3 \cdot 4}{3 \cdot 7} \\
& \frac{4}{7}=\frac{12}{21}
\end{aligned}
$$

Once again, the missing numerator is 12 .
Now find the missing numerator below.
You fill in this missing numerator yourself.

$$
\frac{5}{x}=\overline{x y}
$$

Have you done it?
Look at the following:


The missing numerator is $5 y$.
Now find the missing numerator below.
You fill in this missing numerator by yourself.

$$
\frac{a}{2 x+5}=\frac{}{(2 x+5)(2 x-5)}
$$

Have you done it?
Look at the following:


The missing numerator is $a(2 x-5)$.
Now find the missing numerator below.

$$
\frac{5 a c}{3 x^{2}+7 x-2}=\frac{}{\left(4 x^{2}-3 x+2\right)\left(3 x^{2}+7 x-2\right)}
$$

You fill in the missing numerator by yourself.
Have you done it?
Look at the following:


The missing numerator is $5 a c\left(4 x^{2}-3 x+2\right)$.

